Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-999195

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now spread across the globe. As part of the worldwide response, many molecular diagnostic platforms have been granted emergency use authorization (EUA) by the Food and Drug Administration (FDA) to identify SARS-CoV-2 positive patients. Our objective was to evaluate three sample-to-answer molecular diagnostic platforms (Cepheid Xpert Xpress SARS-CoV-2 [Xpert Xpress], Abbott ID NOW COVID-19 [ID NOW], and GenMark ePlex SARS-CoV-2 Test [ePlex]) to determine analytical sensitivity, clinical performance, and workflow for the detection of SARS-CoV-2 in nasopharyngeal swabs from 108 symptomatic patients. We found that Xpert Xpress had the lowest limit of detection (100% detection at 100 copies/ml), followed by ePlex (100% detection at 1,000 copies/ml), and ID NOW (20,000 copies/ml). Xpert Xpress also had highest positive percent agreement (PPA) compared to our reference standard (98.3%) followed by ePlex (91.4%) and ID NOW (87.7%). All three assays showed 100% negative percent agreement (NPA). In the workflow analysis, ID NOW produced the lowest time to result per specimen (∼17 min) compared to Xpert Xpress (∼46 min) and ePlex (∼1.5 h), but what ID NOW gained in rapid results, it lost in analytical and clinical performance. ePlex had the longest time to results and showed a slight improvement in PPA over ID NOW. Information about the clinical and analytical performance of these assays, as well as workflow, will be critical in making informed and timely decisions on testing platforms.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/virology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Workflow , Young Adult
2.
J Clin Microbiol ; 58(9)2020 08 24.
Article in English | MEDLINE | ID: covidwho-610627

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in December 2019 and has quickly become a worldwide pandemic. In response, many diagnostic manufacturers have developed molecular assays for SARS-CoV-2 under the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) pathway. This study compared three of these assays, the Hologic Panther Fusion SARS-CoV-2 assay (Fusion), the Hologic Aptima SARS-CoV-2 assay (Aptima), and the BioFire Defense COVID-19 test (BioFire), to determine analytical and clinical performance as well as workflow. All three assays showed similar limits of detection (LODs) using inactivated virus, with 100% detection, ranging from 500 to 1,000 genome equivalents/ml, whereas use of a quantified RNA transcript standard showed the same trend but had values ranging from 62.5 to 125 copies/ml, confirming variability in absolute quantification of reference standards. The clinical correlation found that the Fusion and BioFire assays had a positive percent agreement (PPA) of 98.7%, followed by the Aptima assay at 94.7%, compared to the consensus result. All three assays exhibited 100% negative percent agreement (NPA). Analysis of discordant results revealed that all four samples missed by the Aptima assay had cycle threshold (Ct ) values of >37 by the Fusion assay. In conclusion, while all three assays showed similar relative LODs, we showed differences in absolute LODs depending on which standard was employed. In addition, the Fusion and BioFire assays showed better clinical performance, while the Aptima assay showed a modest decrease in overall PPA. These findings should be kept in mind when making platform testing decisions.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , Humans , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2 , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL